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Abstract

Portfolio optimization is a process that allocates resources to an investment based on the

investor goals and the history of a market. The prices of assets are typically modeled

as a stochastic process and their future values are thus unknown when the investment is

made. This uncertainty introduces the notion of risk and is an important factor, besides

the expected return of any portfolio.

We introduce an intuitive model of financial markets, called the Damping model, which can

be used as a framework for price estimation. We then use the model to gain insights into

the stochastic processes underlying asset prices and introduce an algorithm that predicts

the relative profitability of each asset. We further derive some elementary strategies that

accurately predict asset returns and brings high profit to the proposed portfolio with small

associated risk. When transaction costs are introduced into the simulation, much of the

gain is lost in taxation because all investments not expected to profit are fully sold out,

unlike other selection algorithms that keep proportions of assets to hedge against risk.

We conclude with the analysis of until what point our method outperforms other exemplary

portfolios on real data.
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1

Introduction

We consider an investment as the allocation of resources in a market of assets. The proportion of

wealth invested in each asset forms a portfolio and our aim is to pick a portfolio that achieves high

profit with low risk of loss.

At day n, asset m has price Pn,m and there are M assets in the market. The daily return is

Xi+1,m = Pi+1,m/Pi,m and the whole market can be characterized by the sequence of return vectors

Xi = (Xi,1, Xi,2, . . . , Xi,M ).

Our wealth Sn varies daily according to the assets’ prices and our investment strategy. Important

aspects of any portfolio strategy are the expected financial gain E[Sn] and the associated risk, which

is typically a proxy for the standard deviation of the return σSn . Investors are risk averse as they

prefer the minimal risk for a given gain. This is quantified with the investor’s utility U(x), which tells

how much he or she values a given return.

Throughout our analysis, experiments are run on real market data1 of 23 stocks2 traded on the

NYSE for the 4263 trading days from 02/01/1990 to 24/11/2006.

1.1 Asset Prices Growth

In this section we analyze just a single asset and thus drop the m subscript. By definition, Pi+1 =

Xi+1Pi. The return Xi+1 is unknown in advance and is thus a random variable. In literature, the

return vector in time Xn = (X1, X2, . . . , Xn) is often assumed to be a stationary random process and

its components are independent random variables(Lue98). The price of the asset at day n is thus

Pn = XnXn−1 . . . X1P1 (1.1)

Taking the natural logarithm of both sides gives:

lnPn =

n∑
i=1

lnXi + lnP1 (1.2)

Rearranging and dividing by n

ln

(
Pn
P1

) 1
n

=
1

n

n∑
i=1

lnXi

1Kindly provided by Dr. László Györfi
2See Chapter 4.6 for details
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1. INTRODUCTION

Because Xi are independent, for n→∞, by the law of large numbers

ln

(
Pn
P1

) 1
n

= E[lnX1]

Taking the anti-logarithm and raising to the power of n

Pn
P1

= enE[lnX1]

Pn = P1e
nW (1.3)

Equation 1.3 shows that W = E[lnX1] can be considered as the growth rate of the asset price.

Somewhat not intuitive, this means that for a single period investment we are interested in maximizing

the expected gain and for a multi-period investment - the expected logarithm of the return.

Example 1 Consider a throw of a fair coin. On heads our bet doubles and on tails it halves.

X =

{
2 heads
1
2 tails

E[X] =
1

2
(2 +

1

2
) =

5

4
> 1

W = E[lnX] =
1

2
(ln 2 + ln

1

2
) = 0

Therefore playing the experiment once is profitable, but repeating it many times will gain nothing.

1.2 Efficient Markets

An efficient market is one in which the price of an asset reflects the true value of a company (Fam91).

It is an idealized model and in its weak-form states that future prices cannot be predicted by the

analysis of historical data. This claim makes portfolio optimization challenging and brings the need to

model asset prices as uncorrelated stochastic processes. We use this hypothesis to gain understanding

of the market, but will modify it in a sense that it takes time until information propagates and prices

settle.

Chapter 2 shows that some of the most successful portfolio optimization strategies are based on

the analysis of past asset returns. The aim of this thesis is to unite these two conflicting statements

in a new model.

1.3 Prices as Stochastic Processes

Empirical evidence (Figure 1.1) suggests that the Xi terms in equation 1.1 approximately follow a

lognormal distribution. Substituting terms in equation 1.2 as

lnPi+1︸ ︷︷ ︸ = lnXi︸ ︷︷ ︸ + lnPi︸︷︷︸
 Li+1 εi Li

2



1.3 Prices as Stochastic Processes

Figure 1.1: Logarithmic Fit - Histogram of the returns of General Electric (GE)

gives

Ln = L1 +
n∑
i=1

εi (1.4)

Because εn ∼ N(ν, σ2) are independent according to the efficient market hypothesis

 Ln ∼ N(L1 + nν, nσ2) (1.5)

which tells us that the logarithm of the asset prices grows linearly in time.

Now that we have gained insights into the real asset prices, we need a mathematical model to

simulate them. Consider the Wiener process

dP̂

P̂
= µdt+ σε̂

√
dt (1.6)

with ε̂n ∼ N(0, 1). To bring it to a comparable form with equation 1.5, we take the natural logarithm

of both sides. From Itô’s lemma (Hul02),

d ln P̂n =

(
µ− σ2

2

)
dt+ σε̂

√
dt

Dividing the time-span of the above equation into small intervals of time ∆t,

ln P̂n+1 − ln P̂n =

(
µ− σ2

2

)
∆t+ σε̂n

√
∆t (1.7)

By construction, the above process has the same mean and variance as 1.5. Letting L̂n = ln P̂n and

ν = µ− σ2/2, we get

E[L̂n] = L̂1 + nν∆t

var[L̂n] = E
[∑n

i=1 σε̂i
√

∆t
]2

= σ2E
[∑n

i=1 ε̂
2
i∆t

]
= nσ2∆t

3



1. INTRODUCTION

Exponentiating 1.7,

P̂n+1 = P̂ne
ν∆t+σε̂n

√
∆t (1.8)

The last equation is called Geometric Brownian motion and is typically used to model stock prices. It

always holds compared to a straight-forward discretization of 1.6, which is true only for ∆t→ 0. We

can rewrite it as

P̂n+1 = P̂1e
νn∆t

(
eσ
√
n∆t
)ε̄n

(1.9)

The stochastic factor in equation 1.9 consists of a slowly growing term raised to a random number.

We will verify the predictive power of the proposed model in this thesis with this equation.

1.4 Portfolio Definitions

A portfolio at day i is characterized by the fraction of wealth invested in each asset. This is expressed

as the portfolio vector bi ∈ B.

B =

{
bi ∈ Rm : bi,k ≥ 0,

m∑
k=1

bi,k = 1

}
(1.10)

The portfolio gain at i is then bi
tXi and the total gain in the absence of transaction costs is

Sn =
n∏
i=1

bi
tXi (1.11)

Our aim is to maximize 1.11. Each term in the product can be optimized independently and many

authors formulate this greedy strategy in terms of the Bellman’s equation (Sch02).

With transaction costs, we introduce the notion of net capital Ni which denotes the amount of

wealth available for investment at the start of the i-th trading period. We invest bi,jNi in each asset

j. Prior to the rearrangement of wealth, the same asset holds bi−1,jSi−1.

With the above our end of day capital is

Si = Nibi
tXi (1.12)

with

Ni = Si−1 − ct
m∑
j=1

|bi,jNi − bi−1,jSi−1| (1.13)

where the transaction cost ct is the commission factor of the exchange authority. Unfortunately,

equation 1.12 is hard to maximize because Ni appears in both sides of 1.13 and an optimization

process needs to be used.

To gain insights into the source of transaction loses, consider a good strategy which looses little

so that Ni ≈ Si−1. Substituting this into the first term in the modulus in equation 1.13,

Ni ≈ Si−1 − ctSi−1

m∑
j=1

|bi,j − bi−1,j‖ (1.14)

and

Si ≈ (1− ct‖bi − bi−1‖1)Si−1bi
tXi (1.15)

4



1.5 Portfolio Benchmarking

which shows that when transaction costs are considered, we are penalized for the movement of capital

between assets. And although we would like to obtain the maximum for Sn, maximizing one term,

might have negative effect on the ones that follow it. That is the reason why the constantly rebalanced

portfolio where bi = bi−1 is relatively unaffected by transaction costs (See Chapter 4.6).

1.5 Portfolio Benchmarking

Portfolio return is important measure of performance, but investors also base their decisions on the re-

turn per unit risk. In this thesis, we adopt Sharpe’s ratio(Sha94) for benchmarking various investment

strategies. It is defined as:

S =
E[R−Rf ]

var[R−Rf ]
(1.16)

where R and Rf are the portfolio and risk-free asset returns, respectively. It measures how well a

portfolio compensates an investor for the risk taken and the aim of any strategy is to deliver high

returns and high Sharpe ratios.

5



2

Related Work

In this chapter, we introduce several important investment strategies and give intuitive explanations

when and why each one works. We begin with some classic portfolios and a more recent one, based on

machine learning. We conclude with a discussion of several models for pricing an asset and estimating

its usefulness in a portfolio.

For further reading, see the survey paper (GOU08), which provides more details and larger selection

of investment strategies. For clarity, we omit all proofs here and point the reader to the papers that

originally introduced the mentioned portfolios.

2.1 Constantly Rebalanced Portfolio

The Constantly Rebalanced Portfolio (CRP) is characterized by an investment vector b that is constant

in time. The wealth achieved after time n is:

Sn = Sn−1b
tXn

= S1
∏n
i=1 btXi

It is important to note that assets perform differently and after each trading period i, the wealth

Si+1 = btXiSi is rebalanced to bSi+1 for each asset. Because of the constant investment vectors,

relatively small amount of trading is performed. As predicted from equation 1.15, in figure 4.8 we will

see that the CRP performs well in environments with high transaction costs.

We are interested in the best constantly rebalanced portfolio defined by

Sn = max
bn∈B

S1

n∏
i=1

bn
tXi

We used the subscript n in bn to denote that in general, the optimal investment vector changes for

different time intervals. Unfortunately, in real financial markets training bn for past returns does not

perform very well if used for the future. In the Results Chapter 4.6, we used the complete returns and

all graphs indeed show the best CRP, which is non-causal and physically unrealizable.

Sometimes bn can be computed analytically like in the following simple example.

Example 2 Extending example 1, consider the option on betting on a coin

X1 =

{
2 heads
1
2 tails

6



2.2 Universal Portfolio

or just keeping the money aside

X2 = 1

We form a portfolio

b = (b, 1− b)

and would like to pick such b as to achieve the highest growth when playing the game repeatedly. From

section 1.1, we are interested in maximizing the growth rate W , which is the logarithm of the expected

single-period return

W = E[ln btX]

= 1
2 ln (2b+ (1− b)) + 1

2 ln
(
b
2 + (1− b)

)
= 1

2 ln
(
(1 + b)(1− b

2)
)

which is maximal at

b =

(
1

2
,
1

2

)
Imagine we play this game with initial capital S1 = $100. We keep $50 and bet with the rest.

Provided we win, we end up with $150. In the next round, we reinvest $75 and keep aside the other

$75. Our expected profit after the n-th round will be

Sn = S1e
nW

= 100 · 1.061n

2.2 Universal Portfolio

An universal portfolio, as the name suggests, is a portfolio selection scheme that is data-driven and in-

dependent of the underlying probability distribution of asset returns. Most known universal portfolios

are causal and achieve the same exponential profit Sn as the S∗n of the best CRP. That is

1

n
ln

(
S∗n
Sn

)
→ 0 almost surely

Cover introduced the Universal Portfolio (Cov91), with investment vectors bi defined by

b1 =
(

1
m ,

1
m , . . . ,

1
m

)
bi+1 = 1

r

∫
B bSi(b) db

where

r =

∫
B
Si(b) db

is a normalizing factor and

Si(b) =

i∏
k=1

btXk

is the profit achieved of a CRP with investment vector b.

The universal portfolio can be thought of as a performance weighted combination of non-anticipating

constantly rebalanced portfolios. Experiments by Cover show that the performance of the universal

portfolio typically falls between the best performing asset and the best CRP.

7



2. RELATED WORK

2.3 Expert-Based Portfolio Selection

Györfi et al. (GLU06) introduced a more exotic investment strategy that is causal, universal and

typically outperforms the ones listed above. The main idea is that there is an array of experts, each

one giving an investment vector bn,k,l according to the parameters k and l.

bn,k,l(X1 . . . Xn−1) = max
b∈B

∑
i∈Jk,l,n

ln btXi

with

Jn,k,l = {k < i < n : ‖xi−k . . . xi−1 − xn−k . . . xn−1‖ ≤ c/l}

where ‖ · ‖ denotes the Euclidean norm.

Intuitively, each expert compares the string of last k return vectors to all windows of length k in

history. l determines the threshold used to prune windows that are dissimilar. Thus, the expert bk,l

bases its weight vector according to situations that occurred in the past.

The composite bn for trading day n is formed by

bn =
∞∑
k=1

∞∑
l=1

ωn,k,lbn,k,l(X1 . . . Xn−1)

where ωn,k,l is a normalized weight formed according to past performance. Györfi suggests exponential

weighting according to the previous day’s gain.

2.4 Distribution Dependent Portfolio Optimization

In the classic paper (Mar52), Markowitz lays the foundations of modern portfolio theory by minimizing

the portfolio’s risk for a target return. He formulates the optimal diversification as mathematical

optimization, based on the first 2 moments of the asset returns distribution. The portfolio has return

x̄ = E(x) = E

(
N∑
i=1

bixi

)
=

N∑
i=1

biE(xi)

and variance
σ2 = E[(x− x̄)2]

= E

[(∑N
i=1 bixi −

∑N
i=1 bix̄i

)2
]

= E

[(∑N
i=1

∑N
j=1 bibj(xi − x̄i)(xj − x̄j)

)2
]

=
∑N

i=1

∑N
j=1 biσi,jbj

where σi,j is the covariance between assets i and j.

Then the optimal portfolio for a target return xp has minimal variance σ2
m and can be found by

σ2
m = min

b ∈ B
x̄ = xp

N∑
i=1

N∑
j=1

biσi,jbj

8



2.5 Market Models

where B is the set of weights as in 1.10. The above expression can be conveniently solved by the

method of Lagrange multipliers and its solution is widely known. The set of all solutions forms the

efficient frontier, containing all minimum risk portfolios.

Many financists question the applicabilty of the Markowitz portfolio because to make it work,

we first observe the market to estimate properly the assets’ mean and variance. This is not always

accurate and the estimates might become obsolete by the time they are used. The model has been

extended numerous times, typically by including skewness and higher order moments as in (CRHM10).

2.5 Market Models

There are many models in Finance, each one simplifying certain analysis. The Capital Asset Pricing

Model (CAPM) (see (Fre03) for historical and theoretical remarks) has had a prominent role about

investing as it, among other things, determines an appropriate return of an asset if it is to be added to

a well diversified portfolio. CAPM has shaped how financists think about asset returns and risk as it

assigns a value of an asset in a portfolio that is different from the asset’s market value and is based on

the asset’s sensitivity to non-diversifiable risk (denoted by the asset’s β). An interesting consequence

is that sometimes even a loosing asset might be useful if it is sufficiently uncorrelated with the market.

The Cross-Section of Expected Stock Returns (FF92) is an example of another famous model used

in portfolio optimization that classifies assets according to its parameters. Many of the present models

deal with assets in a portfolio while in the following chapter we develop a new model that can be used

to estimate the future price of an asset, without reference to the portfolio it is in.

9



3

Market Model

A discrepancy between market models and investment strategies exists in that the latter work in

practice, but not in the theoretical truly random environment of equation 1.9. Consider the Universal

Portfolio: In equation 1.6 the random term typically dominates the price change making yesterday’s

profit obsolete information. Because random walks are uncorrelated in time, Györfi’s experts method

will maximize over the empty set J and thus always fail.

This chapter introduces a new market model, called the Damping model, which can be used

for price estimation and also gives intuitive explanation why the strategies mentioned above work

theoretically.

For background reading on difference equations and discrete time signals, see (PM96).

3.1 The Damping Model

The main idea of the Damping model is that true asset prices Pm are decoupled from the observed

market vectors Po. Through out this section we explain the model by making analogies to a mechanical

damped harmonic oscillator that mimics the operation of the market (figure 3.1).

Figure 3.1: Damped harmonic oscillator - Pm reflects the true asset prices, while we can only see Po

as the current prices in the market

The True asset prices Pm are the true value of the asset and thus encompass all the company’s

dealings whose appreciation might not yet be known. Consider company XYZ releasing a new product

on which it has heavily invested. It is not known whether it will live up to the stakeholders’ expecta-

tions, which will become clear only in time. Nonetheless, an oracle can tell the product’s influence on

the company’s stock and thus fix a proper price. Thus we model Pm as a random driving force.

Observed market prices Po are the asset prices as seen in a stock exchange. They can be thought

of as the observed position of a body subject to a drag force (eg. suspended in water) connected to

Pm through a spring. The movement causes friction, which stands for persistence in investors’ beliefs.

10



3.2 The Market Transfer Function

Consider again the example of XYZ. Even if the new product’s sales are slow to take off, investors

might be determined that it will be a success and thus decide to invest.

The decoupling spring serves to eventually propagate the true prices to the market prices.

The spring stiffness ck and friction cf coefficients are parameters of the model and determine its

behavior. They also encompass the body’s mass, which has a physical meaning, but is unnecessary in

a market. For simplicity, we apply the proposed model to each asset individually and drop the vector

notation from here on. Additionally, we use x for the observed market position in accordance with

conventions from Physics.

From Newton’s second law of motion (Mor08) we can express the acceleration ẍ of Po as

ẍ = −cf ẋ− ck(x− Pm)

Rearranging,

ẍ+ cf ẋ+ ckx = ckPm (3.1)

Because we are working with discrete data, we need to derive a discrete version of the above

equation. Letting xn = x(n∆t), we substitute ẍi with the Laplacean operator xi−1 − 2xi + xi+1 and

ẋ with finite differences 1/2 · (xi+1 − xi−1). Eq. 3.1 becomes(
1 +

cf
2

)
xn+1 + (ck − 2)xn +

(
1−

cf
2

)
xn−1 =

1

ck
Pm,n (3.2)

3.2 The Market Transfer Function

To gain insights into how to predict future prices, we need to solve equation 3.2 for xn. From super-

position in linear difference equations, we can split the solution into two parts.

The homogeneous solution xh,n is obtained by setting the right-hand side to 0 and is of prime

interest to us because it exposes how the system settles if left alone on its own. The particular

solution xp,n can tell us little because Pm,n is a random number and thus xp,n will be random as well.

Plugging xh,n = γn into 3.2, we get the characteristic polynomial

γn−1
((

1 +
cf
2

)
γ2 + (ck − 2)γ + 1−

cf
2

)
= 0

which we can solve for γ. The model parameters cf and ck govern the damping of the system and

thus we can get xh,n in slightly different forms (see (Mor08) for details).

The solution of the above equation is

γ1,2 = −ck − 2

cf + 2
±
√
cf 2 + (ck − 2)2 − 4

cf + 2
(3.3)

As both roots solve equation 3.2, the general homogeneous solution is1

xh,n = Aγn1 +Bγn2 (3.4)

The impulse response hn of a discrete-time system is the output it produces from a unit sample

excitation. In our case, this is simply equal to xh,n with the proper values for A and B. We can get

1We ignore the critically damped case of a single root in the discussion and leave it as an exercise.

11



3. MARKET MODEL

the constants by explicitly writing out equation 3.2 in 2 time steps. Let us first substitute Pm,n with

the Dirac delta δn and all coefficients as follows

axn+1 + bxn + cxn−1 = δn

We assume the system is at rest for n < 0, which gives

n = −1 : ax0 + bx−1 + cx−2 = 0 ⇒ x0 = A+B = 0

n = 0 : ax1 + bx0 + cx−1 = 1 ⇒ x1 = Aγ1 +Bγ2 = 1/a
(3.5)

If the term under the square root in 3.3 is positive, γ1,2 are real and the system is over-damped.

From the first equation above, we get A = −B and from the second

A(γ1 − γ2) =
2

2ck + cfck

Therefore

A =
1

ck(2− ck)
If the γ1,2 are complex, we get oscillatory behavior and the system is under-damped. We can

express xh,n in the equivalent form of

xh,n = ‖γ1‖nC sin(θn+D), θ = arccos(Re(γ1)/‖γ1‖) (3.6)

Comparing with equation 3.5

x0 = C sin(D) = 0

x1 = ‖γ1‖C sin(θ +D) = 1/a

From the first equation we get D = 0, which allows us to solve the second for C.

C = 1/(a ‖γ1‖ sin(θ))

= ck
1+

cf
2

· 1
Im(γ1)

Having the impulse response allows us to inverse equation 3.2 in the more convenient form of x

being a function of Pm. From signal processing, we know

x = Pm ∗ h (3.7)

where the asterisk denotes convolution and h ≡ xh from before. This expands to

xn =
n∑
k=1

hk Pm,n−k (3.8)

Note that for our purposes the impulse response xh,n is causal, which we achieve by truncating equation

3.6 for n < 0. Additionally, above we used k = 1 as the starting point of the summation because

xh,0 = 0. This is somewhat consistent with our previous 1-based indexing1.

1Pm,n and xn still start at n = 0.

12



3.3 Parameter Estimation

3.3 Parameter Estimation

Estimating ck and cf from 3.2 is difficult because there are three unknowns (Pm,n is the third) and

one equation. Even if we repeat it in N time points, there are still N +2 unknowns. We can, however,

pick an estimate for ck and cf , and then solve for Pm. This allows us to apply equation 3.8 to estimate

x. We might be tempted to minimize the resulting error

min
cf ,ck
‖x1...N − h(cf , ck) ∗ Pm,1...N‖2 (3.9)

The objective function above, however, is always 0 by construction because Pm is formed from x, cf

and ck. For illustration, let’s pick a slightly under-damped case with cf = 0.8 and ck = 0.2. The

resulting transfer function h is shown in figure 3.2. Figure 3.3 shows the observed asset prices of IBM

in 1H2010 versus estimated ones. The estimated graph is formed by computing Pm first and then

using 3.8 to recover back Po.

Figure 3.2: Transfer Function of the Damping Model for IBM - The dashed line is a spline

interpolation of the transfer function to highlight its general outline

We might argue that there is an upper bound on the number of steps it takes for Pm to propagate

to Po, which restricts the domain of the parameters. Figure 3.4 graphically plots the error in parameter

space for IBM’s stock and there are still too many sets of parameters that yield acceptable recovery.

Let’s look in more detail why equation 3.9 is always true. It estimates xi from Pm,1...i−1, but

Pm,i−1 is a based on xi itself! If we can, however, guess a value for Pm,i−1, we could causally recover

xi.

Assuming x follows a Brownian motion, equation 1.8 allows us to guess xi (denoted by x̃i). Then

we form P̃m,i−1 from xi−2, xi−1 and x̃i directly by equation 3.2. Convolving the new Pm with h results

in an estimate of xi, which we hope is better than x̃i, given the proper set of parameters.

13



3. MARKET MODEL

Figure 3.3: Estimating the price of IBM’s stock - For illustration, we chose the initial estimate price

to be 0, so it is visible how the spring pulls the weight and then it closely follows the real asset data.

Figure 3.4: Objective function values for IBM’s stock - The transfer function h was restricted to

16 samples. To get insights into the magnitude of error, the mean stock price is 126.52 and N = 1000

14



3.3 Parameter Estimation

Therefore a more realistic and useful metric for estimating cf and ck is the total square error of

prediction

min
cf ,ck

N∑
i=1

|xi − x̃i(x1...i−1)|2 (3.10)

Equation 3.10 is difficult to optimize because it has no closed form solution and the objective

function is chaotic with many local minima. Because the minima are often clustered together, a good

strategy is to perform a 2-level uniform 2D search in parameter space. First we coarsely iterate over

a larger parameter span and then focus around the minima found so far. Because of the random-

ness involved, we average several x̃ before using the result in 3.10. Figure 3.5 shows the procedure

graphically.

Figure 3.5: Estimation error - The results of a 2-level search in parameter space for a 256 days IBM

stock sequence. The minimum square error of the asset returns is 0.059 at cf = 2.32, ck = 2.51.

The strategy above could be applied again for the new estimate and our guess would converge to

the true value of xi. Of course, the catch is that the second prediction typically is not better than

the first, which already was completely random! To see why, let’s write the improved guess as the

convolution sum of P̃m and h split into a random and an exact component E.

xi = h1 ·
(
ck +

ckcf
2

)
· x̃i + E

where h1 depends on the parameters and the damping case. For the over-damped, from equation 3.4

we get

h1 =
2
√
c2
f + (ck − 2)2 − 4

ck(2− ck)(2 + cf )

If we were to use the Damping model to decrease the effect of the uncertainty of predicted values, the

factor before x̃i needs to be less than 1. Instead of bogging down in details, we next present a much

better-performing method for estimating cf , ck and xi itself, by predicting a proper value for Pm.

Figure 3.6 shows that Pm ratios indeed show resemblance of a log-normal random process. From

simulations we will later see that modeling it as a normal process performs better. We can guess a

Pm,i by recovering µ and σ of Pm,i/Pm,i−1 from the past few values of i and use them to generate a

15



3. MARKET MODEL

normal random number r. Then Pm,i ≈ rPm,i−1. Taking the mean of 16 such Pms brings down the

squared error to 0.014 for the dataset used in figure 3.5.

Figure 3.6: Histogram of Pm ratios - To decrease the effects of noise, the graph shows a histogram of

IBM’s Pm,i/Pm,i+1 for the 16 years period starting in 1990.

3.4 Monte-Carlo Simulation

To verify the Damping model, we perform a Monte-Carlo simulation to investigate its real-world

applicability. Algorithmically, we loop over the observed prices and on the i-th iteration we do as

follows

1. Compute Pm,i−16...i−1 from xi−17...i

2. Estimate µ and σ for the distribution Φ of Pm,i+1/Pm,i

3. Generate N random ratios r from Φ and estimate P̃m,i = rPm,i−1

4. Treat each outcome equally probable and pick the portfolio weights b to maximize the expected

log-return

Mathematically, the last step finds

W =
1

N
max
b∈B

N∑
i=1

log wtP̃m,i

where from equation 1.3 we know what W is the average growth-rate and is the reason why we perform

the optimization. The maximization routines need to evaluate the above expression numerous times,

and thus we need to use the more efficient equivalent

W =
1

N
max
b∈B

log

N∏
i=1

wtP̃m,i
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Because the actual value of W is not needed, we can also omit the scale by the constant in front.

To validate the implementation, we first run the optimization on the synthetic assets as shown in

figure 3.7. Both of the assets are non-profitable, however, we can easily see that for periods of time

one is significantly more profitable than the other. Figure 3.8 indeed shows significant profits. Note

that the algorithm (discussed shortly) is causal and does not look into the future. It nevertheless

predicts accurately future profits because for such regular processes, the h1 of the transfer function is

small and thus the current value of Pm is mostly predicted from history.

Figure 3.7: Synthetic Assets - To validate our algorithm, we run it on 2 uncorrelated non-profitable

assets.

Perhaps the simplest, yet robust real-world test is a portfolio consisting of a risky asset and the

risk-less investment, such as keeping the money in a bank. Program 1 gives the code listing of a

MATLAB program to perform this task and figure 3.9 shows the results1

3.5 Comments and Conclusion

With the Damping model, we can intuitively justify the strategies mentioned in the preamble. The

inertia of the market shows that Györfi’s experts method exploits the fact that Pm cannot instan-

taneously modify the velocity of the observed market prices. Thus the set J can be thought of as

moments back in time when the weight of figure 3.1 was moving with similar to the current velocity. It

is like a bowling game, where different Js contain past trials with similar strike vectors. By comparing

with them, we can quite accurately estimate how much we will score2.

We have seen that the Damping model works well with predictable processes. (LM88) show that

low value stocks show a much higher degree of correlation and we expect better performance if we

1cf = 1.2 and ck = 3.2 were used, which give weaker returns prediction, but perform better in portfolio optimization

than the ones mentioned previously.
2To make the analogy complete, we need to assume very strong and chaotic wind over the track, though.
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3. MARKET MODEL

Figure 3.8: Profit from the Synthetic Assets - The Damping model predicts asset returns and the

gain of the simulation stays relatively flat when the sinusoidal process is loosing.

Figure 3.9: Simulation of a Single Asset Portfolio - Applying program 1 for IBM’s stock in the first

100 trading days of 2010 results in a profit improvement of about 3%.

18
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Program 1 Simulation program with 1 asset

1 % In: P - observed prices, rf - risk free rate, cf, ck -

2 % model parameters, h - transfer function, n - number of runs

3 % Out: profit - daily profits

4 function profit = simrf(P, rf, cf, ck, h, n)

5

6 len = size(P, 1);

7 Pd = 0.5*[0; P(3:len) - P(1:len-2); 0];

8 Pdd = [0; P(3:len) + P(1:len-2) - 2*P(2:len-1); 0];

9

10 Pm = (Pdd + cf*Pd + ck*P)/ck;

11

12 real x = P(2:end)./P(1:end-1);

13

14 % Reverse tr. function for convenience

15 h = h(16:-1:1);

16

17 p = ones(len,n);

18

19 for r=1:n

20 % start at 16, so that prediction is more accurate and to skip

21 % bound checks / initial conditions for the convolution.

22 for i=16:len-1

23

24 Pm history = Pm(max(1,i-32):i-1);

25 Pm ratio = Pm history(2:end)./Pm history(1:end-1);

26

27 % calculate 32 sample Pms

28 Pm rand = Pm(i-1)*(mean(Pm ratio) + std(Pm ratio)*randn(32, 1));

29

30 % explicit convolution

31 pred x = (h(1:end-1)*Pm(i-15:i-1) + h(end)*Pm rand)/P(i);

32

33 % log-optimal weight

34 fobj = @(w) -prod(b*pred x + (1-b)*rf(i));

35 b = fmincon(fobj, 0.5, [1; -1], [1; 0]);

36

37 % store profit

38 p(i+1, r) = p(i, r)*(b*real x(i) + (1-w)*rf(i));

39 end

40 end

41 profit = sum(p, 2)/n;

42 end
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3. MARKET MODEL

apply the model to them. Although we have seen it works even in the rather random process of IBM,

as a future work it would be interesting to investigate its performance on a much larger collection of

assets.

(Fam91) states that transaction costs are sometimes a cause for market inefficiency. So far we have

omitted them, but it would be useful to see their effect on the results or even better - incorporate

them into the model itself.

Behavioral economics are also important to incorporate into any predicting model. For example,

there are yearly market trends depending on the industry sector. One way to add them to the Damping

model is to model the trends as forces on Pm.
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4

Profit-Loss Prediction

Although the Efficient market hypothesis and the theory of Geometric Brownian motion mandate that

asset returns are not correlated in time, we have seen this is not always true. This chapter shows my

preliminary work on portfolio optimization, which led me to developing the Damping model. We will

derive a few elementary strategies that show how past prices can be exploited for profit.

4.1 Theoretical Analysis

Previously we defined profit as Xi+1 = Pi+1

Pi
. Substituting equation 1.9 into this:

Xi+1 = P1eν(i+1)∆teσε̄i+1
√

(i+1)∆t

P1eνi∆teσε̄i
√
i∆t

= eν∆teσ(ε̄i+1

√
(i+1)∆t−ε̄i

√
i∆t)

Using
√
i+ 1 ≈

√
i for large i and Taylor expansion around 0 for the first term (ν → 0; in the GE

example from figure 1.1, ν = 0.000135), gives:

Xi+1 ≈ (1 + ν∆t)eσ
√
i∆t(ε̄i+1−ε̄i)

= µC ε̄i+1−ε̄i
(4.1)

where C > 1 is a non-random factor and µ is the asset’s risk-less growth rate which can be seen by

setting ε̄i = ε̄i+1 = 0. From equation 1.9, we know that in fact

ε̄n =
1√
n

n∑
i=1

εi

which implies cov(ε̄n, ε̄n+1) = 1, as n→∞, making equation 4.1 a worthless approximation. Nonethe-

less, we can make significant profits based on it, which is what initially led me to believe that looking

long back in history is futile. Let’s for now assume equation 1.9 holds only for small n and thus ε̄n

are not completely correlated.

Investment in an asset is profitable if Xi+1 > 1, which is true if ε̄i+1 > ε̄i. The decision to invest

is made at time ti when ε̄i is already known. Thus we are mainly interested in assets for which

P(ε̄i+1 > ε̄i|ε̄i) >
1

2
(4.2)
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4. PROFIT-LOSS PREDICTION

We typically want to include also assets that might not be profitable to decrease the volatility of

our portfolio. Thus we can use the above probability as an argument to a weight computing formula

discussed below.

P(ε̄i+1 > ε̄i|ε̄i) =
∫∞
−∞ I(x > ε̄i)φ(x) dx

= 1−
∫ ε̄i
−∞ φ(x) dx

= 1
2

(
1− erf

(
ε̄i√
2

)) (4.3)

From the market history we can recover ε̄i. Using equation 1.9 and making the substitutions made

above, the current price of an asset is

Pi = P0µ
i
(
eσ
√
i∆t
)ε̄i

Inverting,
ε̄i = log

eσ
√
i∆t

Pi
µiP0

= 1
σ
√
i∆t

ln Pi
µiP0

(4.4)

Substituting equation 4.4 into 4.3

Pprofit(Pi) =
1

2

(
1− erf

(
1

σ
√

2i∆t
ln

Pi
µiP0

))
(4.5)

µ = E[X] and σ = stdev(X) can be extracted from past returns. In section 4.1.1, we will see that

equation 4.5 is relatively insensitive to them.

4.1.1 Approximation

Equation 4.5 looks a bit formidable, and although it can be efficiently implemented, we can simplify

it considerably with a few approximations.

Consider the logarithm argument in 4.4 and assume P0 = 1. Pi
µi

is always positive and from

experimental observation less than 1. Using

ln(z) = 2
∞∑
n=0

1

2n+ 1

(
z − 1

z + 1

)2n+1

From the first term, ε̄i becomes

ε̄i ≈
2

σ
√
i∆t

Pi − µi

Pi + µi

We can linearly approximate equation 4.3 because it is relatively straight around ε̄i = 0 as seen in

figure 4.1.

P(ε̄i+1 > ε̄i|ε̄i) ≈ −0.4ε̄i + 0.5

With the above, equation 4.5 becomes

Pprofit(Pi) ≈ −
0.8

σ
√
i∆t

Pi − µi

Pi + µi
+ 0.5 (4.6)

without any transcendental functions.

The next section further exploits the past returns’ profitability and fits an appropriate distribution

empirically.
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4.2 Profit/Loss Sequences

Figure 4.1: Probability of Profit - Approximation to P(ε̄i+1 > ε̄i|ε̄i)

4.2 Profit/Loss Sequences

In equation 4.1, we can approximate ε̄i+1 − ε̄i with ε̂i ∼ N(0, 2)1 Then

Xi+1 = µC ε̂i (4.7)

which tells us that there is approximately equal chance if an asset performs well or not. Assuming ε̂i

and ε̂j are independent for i 6= j, it might seem that history is irrelevant for predicting profits.

Figure 4.2 shows the return vectors X for Ford and IBM over a 40 days interval in 1991. Visually,

returns seem not to be correlated in time (Fam91, Lue98), however, we see that they do seem to oscillate

around unity. The average oscillation period seems slightly larger than 2 samples and sometimes there

is more than one sample on the same side around X = 1. We hardly see, however, long strings of

continuous loss.

A natural question to ask is: Given we already saw n consecutive loses, what is the probability

that the asset will turn profitable in the next time step? To quantify our observations, we first apply

a binary threshold whether an asset is profitable. Then we identify all windows in time that contain

n consecutive loses and note the ratio of the number of windows that are followed by profit over their

total number. This gives a profitability distribution and figure 4.3 shows the results on real-world

data of 23 assets and 4263 trading days. Because the profitability distribution is somewhat varying in

time, a surprisingly well performing approximation is

Pconsec(nL) ≈ 0.5nL (4.8)

1By the formula Z = X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2) for independent random variables.
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4. PROFIT-LOSS PREDICTION

Figure 4.2: Returns History for Ford and IBM -

Figure 4.3: Profitability Distribution - For example, there is about 72% probability that the first red

asset will turn profitable after seven consecutive loses.
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4.3 Investment Strategy

4.3 Investment Strategy

In the previous sections, we derived two orthogonal probabilities based on the current price Pi and on

the sequence of consecutive loses nL. Although both of them provide reasonable investment strate-

gies, combining them together gives a better performing portfolio characterized by its unnormalized

portfolio vector bi

bi(n, Pi) = ω1(Pconsec(nL)) · ω2(Pprofit(Pi)) (4.9)

where

ω1(x) = ec1x and ω2(x) = x− c2

Because Pprofit is around 0.5, we would like a more pronounced weight for profitable assets and

almost no weight for the others. Thus, ω2( ) can be thought of a contrast improving function. ω1( ) is

an empirical function and has very strong impact on the gain of the strategy. Well performing values

for the constants (chapter 4.6) are c1 > 30 and c2 = 0.22.

4.4 Transaction Costs

When transaction costs are introduced, our investment strategy needs to take into account the loses due

to trading (see equation 1.12). The portfolio defined by equation 4.9 is based on predicting profitable

assets and thus the investment vectors bi and bi+1 may end up very different. As a contrasting

example, a buy-and-hold strategy has no loses in taxation as it performs no trading at all.

To decrease transaction costs, consider adding damping to the bi+1 by means of linear friction.

b̂i+1 = bi+1 − c3 · (bi+1 − bi)

where c3 is the coefficient of friction. From equation 4.8, we can estimate how likely each asset is to

continue to be profitable and modulate its friction accordingly.

b̂i+1 = bi+1 − c3Pconsec(nP ) · (bi+1 − bi) (4.10)

The parameter c3 is somewhat dependent on the amount of transaction cost and as explored in

the results chapter (4.6), values close to c3 = 0.87 perform best for the given dataset1.

1Fortunately, the three algorithm parameters vary little on real-world data and can be trained only once. Chapter

4.6 shows the optimal values
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4.5 Algorithm

In this chapter we list the profit-loss portfolio strategy. The implementation is a simple for-loop in

time over the return vectors. In the presence of transaction costs, movement of capital is restricted

according to equation 4.10.

Although for clarity all algorithms shown here take for an input the complete returns vector X,

they are causal (i.e. operating without knowledge of the future). In a real-life scenario, on each trading

day they will execute a single iteration of the outer for-loop to predict the portfolio weights b for the

next day.

4.5.1 Profit-Loss Portfolio with no Transaction Costs

The profit-loss portfolio algorithm is a straight forward implementation of equation 4.9. Note that

most lines operate on m-dimensional vectors and arithmetic operations are element-wise. For example,

line 8 computes the standard deviation of each asset into σ = (σ1, σ2, · · · , σm)

Profit-Loss(X1...N , c1, c2, c3, h) :=

1 p ← 1
2 for i ← 1 . . . N−1
3 do

� Compute Pconsec

4 history ← Xi,...,i−h < 1
5 history ← cumulative-and(history)
6 consec ← vertical-sum(history)
7 Pconsec ← 0.5 · consec

� Compute Pprofit

8 σ ← stdev(X1 ...i)
9 µ← E[X1 ...i ]

10 ε← 1
σ
√

2i
log X1...Xi

µi

11 Pprofit ← 0.5(1− erf(ε))

� Compute the weights
12 w ← ec1Pconsec

13 w ← w ·max(Pprofit −c2, 0)
14 w ← w /sum(w)
15 p ← p wtXi+1

16
17 return p

Line 4 performs logical comparison over the h×m sub-matrix of X such that it sets the elements of

history to 1 when the returns over the last h days are not profitable. The following example illustrates

lines 4-6.

Example 3 Consider

Xi,...,i−h =

 1.1 0.9 0.8

0.8 0.9 1.3

1.2 1.2 0.7


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then

history =

 0 1 1

1 1 0

0 0 1


cumulative-and in line 5 performs the following operation

Xi

Xi&Xi−1

...

Xi&Xi−1&...Xi−h


resulting in

history =

 0 1 1

0 1 0

0 0 0


and finally after vertical-sum we end up with

consec =
(

0 2 1
)

We can eliminate the parameter c1 because in figure 4.4 we will see that performance is best as

c1 → ∞. Lines 7 and 12 followed by the normalization in 14 in fact just select the assets that have

been loosing for the longest, and thus the prior two can be replaced with

w ← history == max(history)

The other parameter in the listing - h governs how long back into history the algorithm considers.

Experimentally, values after 3 bring diminishing returns, while h = 3 performs much better than 1 or

2.

4.5.2 Transaction Costs

Following equation 4.10, we need the probability P ′consec that a profitable asset will loose. This can

be accomplished by the equivalent of lines 4-5 with the ’<’ sign replaced with ’>’ in line 4. The final

weight needs to be further modulated by

w ← w −c3P
′
consec · (w − lastw)

followed by renormalization. lastw are the portfolio weights from the last iteration.
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4.6 Results

The input data to all algorithms benchmarked in this chapter is the return vectors Xi of 23 assets1,

traded on the NYSE for the 4263 trading days from 02/01/1990 to 24/11/2006. Prior to computing

the returns, all closing prices for day i are adjusted for dividends and stock splits, according to:

Xi =
Pi

Pi−1 − CASH DIVi

SPLIT MULTIPLIERi

STOCK DIVi + 1

4.6.1 Parameter Analysis with no Transaction Costs

The performance of our strategy depends on the parameters c1 and c2. Figure 4.4 shows that both

the profit and the Sharpe’s ratio asymptotically increase as c1 → ∞. The effect of high values for c1

is that the strategy gives weight only to the assets that have been loosing for the longest amount of

time, i.e. it only gives weight to assets having a loss of 3 consecutive trading days, if any. Else, to

those of 2 consecutive loses and then to those of 1.

Figure 4.4: Effect of c1 on profit and Sharpe’s Ratio - The higher values of the parameter c1 give

more weight to assets that have been loosing several times in a row

Having fixed c1, figure 4.5 shows how c2 affects performance. At c2 = 0.22, the profit-loss portfolio

strategy achieves a maximal profit of 3069, with a Sharpe’s ratio of 0.1043. In comparison, the

non-causal best constantly-rebalanced portfolio achieves 27.081, with a Sharpe’s ratio of 0.0512.

Figure 4.6 shows a time plot of the wealth achieved by both strategies.

4.6.2 Parameter Analysis with Linear Transaction Costs

In this section the capital gained on a trading day by an algorithm is discounted according to equation

1.12.

1Risk-free, ahp, alcoa, amerb, coke, comme, dupont, ford, ge, gm, hp, ibm, inger, jnj, kimbc, kinar, kodac, merck,

mmm, moris, pendg, schlum, and sherw
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4.6 Results

Figure 4.5: Effect of c2 on profit and Sharpe’s Ratio - The portfolio performs best at c2 = 0.22

Figure 4.6: Profit-Loss Portfolio Performance - In the 16 year test period, the profit-loss portfolio

outperforms the best constantly rebalanced portfolio by more than 2 orders of magnitude. For the same

time-interval, the risk-free asset grows 2.1089 times.
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4. PROFIT-LOSS PREDICTION

c=0 c=0.15%

Best Asset 12% 12%

Best CRP 22% 21%

Profit-Loss 61% 29%

Expert-based 137% 89%

Table 4.1: Comparison of Performance

Setting the friction parameter c3 to values other than 0 improves performance when transaction

costs ct are considered. Figure 4.7 shows that for ct = 0.15% performance is best at c3 = 0.87. It

turns out that c3 is an asymptotically bounded, monotonically increasing function of ct. For a wide

range of transaction costs, however, c3 = 0.87 performs well.

Figure 4.7: Effect of c3 on profit - The effect of the parameter c3 on the profit with transaction cost

of 0.15%. The CRP’s profit of 25.23 is also shown for comparison

Figure 4.8 shows the profit obtained for varying transaction costs. For tc ≤ 0.23%, the profit-loss

portfolio outperforms both the best constantly rebalanced portfolio (profit of 24.09) and the buy-and-

hold of the best asset (profit of 18.75)

4.7 Comparisons and Conclusion

Table 4.1 compares the performance of the profit-loss portfolio to other exemplary portfolios1. The

profit-loss portfolio falls second in terms of performance. In terms of run-speed, subjectively it runs

instantaneously, while the best CRP takes seconds and the expert-based - a day.

1The expert-based gains might be over-estimated because the algorithm was run on an earlier period of the same

assets.
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4.7 Comparisons and Conclusion

Figure 4.8: Profit with Transaction Costs - The profit-loss portfolio is relatively sensitive to transac-

tion costs

The simplicity and high gains of the profit-loss portfolio are, in my opinion, worth further inves-

tigation. It led me to question the efficiency of markets and to develop the Damping model. Because

the profit-loss portfolio as I presented it does not derive from the model, it might be instructive to

further develop and unify them.
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